Ramsey-Turán-type of extremal problems

Maryam Sharifzadeh
Department of Mathematics,
University of Illinois at Urbana-Champaign,
sharifz2@illinois.edu

Maryam Sharifzadeh completed her PhD at University of Illinois at Urbana-Champaign in August 2016, advised by Jozsef Balogh. She will start a postdoc position at University of Warwick in October 2016.

Abstract

Many classical results in extremal graph theory provide sufficient conditions for the appearance of a certain structure. For example, the fundamental theorem of Ramsey states that one can find a monochromatic clique of a given size in any edge-coloring of a sufficiently large graph. Another example is Turán theorem which determines the maximum size of a graph without a fixed size clique. The extremal example for this theorem is Turán graph, an n-vertex complete k-partite graph where all partite sets have size $\lfloor n/k \rfloor$ or $\lceil n/k \rceil$. Motivated by the fact that the Turán graph has linear-sized independent sets, Erdős and Sós initiated the so-called Ramsey-Turán theory, where they studied the maximum size of an H-free graph G with the additional condition that $\alpha(G) = o(|G|)$. Here, we will consider the Ramsey-Turán variation of some classical results, whose extremal graphs are close to the Turán graph. In particular, one of the results is the following Ramsey-Turán variation of the Corrádi-Hajnal theorem: every n-vertex graph G with $\alpha(G) = o(n)$ and $\delta(G) \geq (1/2 + o(1))n$ has a triangle factor. This bound is asymptotically best possible.

(This is a joint work partly with Jozsef Balogh and Hong Liu, and partly with Jozsef Balogh and Theodore Molla.)

Monday, 5 Mehr 1395 (26 September 2016), 15:00-16:00
Room 317, Department of Mathematical Sciences

http://mehr.sharif.ir/ combinatorics
combinatorics@mehr.sharif.ir